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a b s t r a c t

Photometric clustering of regenerated plants of gladiolus was described using fuzzy adap-

tive resonance theory (ART) and the resultant grouping pattern was compared with ART

2, and self-organizing map (SOM) neural network modules. Classical clustering techniques

such as hierarchical (HC) and k-means clustering (KM) were also applied to analyze the same

data set to evaluate the performance of the artificial neural network (ANN)-based cluster-

ing. Regenerated plants were clustered into two groups in varying numbers by ART 2, SOM,

HC and KM. With ART 2, 19 of 55 plants were sorted into group ‘0’ and the remaining 36

plants were placed in group ‘1’, whereas; SOM distributed the regenerated plants in the

ratio of 28:27. The clustering ratios of HC and KM were 34:21 and 26:29, respectively. How-

ever, a refined clustering of regenerated plants into seven groups was observed with Fuzzy

ART. There was a similarity in the number of generated clusters between the training and

validation data sets indicating the network efficiency. Biological validation of photometric

clustering of regenerated plants was also assessed by indexing the corm induction poten-
tial of the sorted groups. A significant difference in corm induction potential between the

groups was noted only with ART 2. Fuzzy ART-assisted grouping patterns are not conducive

to segregate the potential corm producing shoots. ART 2-aided clustering of the regener-

ated plants appeared to be more promising for selecting group of plants capable of corm

development than did other clustering approaches.

attention for studies to characterize the in vitro and/or ex vitro
1. Introduction

Micropropagation through tissue culture techniques is widely
used for multiplication of elite plant species to produce genet-
ically identical plants. However, one of the major bottlenecks
in commercialization of micropropagation is the poor sur-
vival of regenerated plants upon ex vitro transfer. In vitro
environmental factors such as gradients in humidity and/or
CO concentration, differential distribution of light intensity
2

and air temperature inside the culture vessel has significant
impact on growth and quality of the regenerated plants dur-
ing micropropagation (Ibaraki, 2006). Such inconsistencies in
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the cultural environment, even under controlled conditions,
might cause variations in the regenerated plants which affect
uniformity in plantlet quality. Regenerated plants may differ
in their in vitro behavioral aspects, viz., root and storage organ
(such as corm) development ability, hyperhydric status, and
adaptability to ex vitro conditions. These kinds of variation are
not commensurate with that of well-documented aspects of
somaclonal variation (Larkin and Scowcroft, 1981) and deserve
behavioral aspects of the plantlets.
Development of an automatic decision-making entity

reflecting the variations of in vitro regenerated plants is
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ecessary to ensure high rate of success in micropropagation.
he decision-making may be made in the form of grouping
r clustering of the regenerated plants based on their pho-
ometric properties, and correlating the ability of the sorted
roups with respect to organogenic potential and ex vitro sur-
ival. Since the physiological and behavioral variations among
he regenerated plants are difficult to be resolved by human
isual evaluation, machine vision-coupled neural network-
ased clustering might be an efficient alternative to select
lants or groups of plants with organogenic potential and high
ercent of ex vitro survival.

The main objective of any clustering model would be to find
valid organization of the data with respect to the inherent

tructure and relations among the inputs. Classical cluster-
ng methods, e.g. hierarchical clustering (HC) (Eisen et al.,
998), k-means algorithm (KM) (Hartigan and Wong, 1979), and
elf-organizing maps (SOM) (Tamayo et al., 1999), have been
estricted in classifying human cancerous cell lines and gene
xpression analysis of baker’s yeast with considerable pitfalls
Eisen et al., 1998; Tamayo et al., 1999; Ross et al., 2000). The
NN-based modeling approach has been found to be more
exible, effective and versatile in dealing with non-linear rela-
ionships prevalent in plant cell culture practices (Albiol et
l., 1995). In plant tissue culture systems, artificial neural net-
orks (ANN) have been used for pattern recognition of somatic

mbryos, growth evaluation, estimation of shoot length, on-
ine estimation of biomass and photometric assessment of
egenerated plants (Prasad and Dutta Gupta, 2006). In the field
f neural networks, the adaptive resonance theory (ART) was

ntroduced by Grossberg (1976) as a theory of human cognitive
nformation processing. ART is a kind of self-organized clus-
ering, which clusters a given set of input patterns into some
roups in an unsupervised manner. The most distinctive fea-
ure of an ART model lies in its ability to adapt to new input
atterns while maintaining the temporal stability of stored
atterns. As a member of ART networks, ART 2 (Carpenter
nd Grossberg, 1987a) was designed to accept and process
nalog or binary vectors in contrast to ART 1 (Carpenter and
rossberg, 1987b) which exclusively deal with binary forms of

nputs. We have successfully demonstrated the ART 2 neu-
al network-aided image processing method for photometric
lustering of regenerated plants of gladiolus based on the
richromatic (RGB) features of leaves (Mahendra et al., 2004).
owever, as the photometric variations are highly inconsis-

ent with an exhaustive range of overlapping, a more discrete
pproach is required to channel such variable patterns into
table recognition categories. The fuzzy set theory and com-
lement coding incorporated in Fuzzy ART neural networks
ay allow refinement in grouping pattern. Fuzzy ART has been

ntroduced by Carpenter et al. (1991) for rapid stable learning
f recognition categories in response to analog or binary input
atterns. Properties of ART networks depend on two main
arameters, vigilance (�) and learning rate (ˇ). The vigilance
arameter (VP) defines the minimum similarity between pat-
erns in one cluster. The resulting number of clustered groups
epends on the similarity patterns of all input patterns. The
ncorporation of the VP value that controls the grouping pat-
ern within the inputs provides leverage to the user to decide
s to how many reasonable and logical groups are expected
rom autonomous and adaptive clustering of the ART network.
g r i c u l t u r e 6 0 ( 2 0 0 8 ) 8–17 9

A learning procedure adjusted the weight vector Wj of cluster
j, the vector represents the pattern of cluster j.

In the present work, we describe the photometric clustering
of regenerated plants of gladiolus by Fuzzy ART. To compare
the efficiency of the clustering results, we also applied ART
2, SOM, HC, and KM to the same data. Biological validation
of the clustering of regenerated plants into groups has been
assessed by indexing the in vitro corm development potential
of the respective groups.

2. Materials and methods

2.1. Plant regeneration and in vitro corm induction

The primary leaves of the sprouted corms of Gladiolus hybridus
Hort. were surface disinfected with 0.1% HgCl2 followed by
three to four rinses in sterile double distilled water. The
basal meristematic portions of the innermost leaves were dis-
sected, blotted dry and inoculated on Murashige and Skoog
medium (MS; Murashige and Skoog, 1962) containing 2.0 mg/l
�-naphthaleneacetic acid (NAA), 3% (w/v) sucrose and 0.8%
agar. The leaf-derived calluses were then transferred onto
MS medium supplemented with 0.2 mg/l NAA and 2.0 mg/l
6-benzyladenine (BAP) for the induction of meristematic bud
clusters as described previously (Dutta Gupta and Datta, 2004).
The differentiated multiple shoot clusters were transferred
onto basal MS medium devoid of growth regulators in five
GA-7 vessels (Osmotek, Israel) and incubated for a period of
2 weeks. There were 5 clusters per vessel, each with 2–5 shoot
buds. The training set comprised of 25 leaf images, each hav-
ing its origin from a regenerated plant per cluster as detailed
in Mahendra et al. (2004).

For testing as well as biological validation (hereafter
referred to as validation set) a total of 55 regenerated plants
were sampled randomly. The outermost expanded leaves of
the regenerated plants were excised and used for photometric
feature extraction. Digital images of 1–55 regenerated leaves
belonging to 1–55 shoots were acquired and numbered from
R1 to R55. The corm induction potential of R1–R55 regenerated
plants was monitored. For corm induction, the corresponding
regenerated plants without the outermost leaves were individ-
ually inoculated in culture tubes (25 mm × 150 mm) with 20 ml
of MS medium supplemented with 0.5 mg/l NAA, 6% sucrose
and 0.8% agar. The cultures were incubated for 90 d. Perime-
ters, fresh weights and dry weights of the developed corms
were measured. The pH of all the media was adjusted to 5.6
before autoclaving for 15 min at 121 ◦C and 106 kPa. All cultures
were kept at 16 h photoperiod (irradiance of 50 �mol m−2 s−1),
temperature of 25 ◦C and relative humidity of 55%.

2.2. Extraction of photometric parameters of leaves

Photometric data that included the mean brightness, grey-
scale level for the maximum pixel count and maximum pixel
count in the luminosity and trichromatic (red, green and blue)

components were extracted from digitized leaf images as
described by Mahendra et al. (2004). The outermost expanded
leaves of the regenerated plants were scanned under constant
luminosity and the digitized images were saved in Adobe Pho-
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toshop; Adobe Systems Incorporated, USA (*.psd) format with
8 bits per pixel having 256 grey-scale levels. The pixel prop-
erties of the images were evaluated using Adobe Photoshop
7.0 software. Each leaf image represented a single, randomly
selected regenerated plant per cluster.

2.3. Cluster analysis of the photometric data

For grouping the regenerated plants into cluster, the pho-
tometric data of the regenerated leaves procured from the
digitized leaf images were subjected to adaptive resonance
theory (ART 2), self-organizing map (SOM), hierarchical clus-
tering (HC), k-means algorithm (KM) and fuzzy adaptive

resonance theory (Fuzzy ART) cluster analyses as described
below. Significant difference among the groups with regard to
corm parameters was ascertained by P value obtained from
t-tests of the two samples assuming heteroscedasticity. Com-

Fig. 1 – Step-wise illustration of photometric clustering of in vitro
validation.
g r i c u l t u r e 6 0 ( 2 0 0 8 ) 8–17

ponent steps of photometric clustering of regenerated plants
of gladiolus and its biological validation are presented in Fig. 1.

2.3.1. ART 2- and SOM-based cluster analyses
The ART 2 neural network trained with a set of 25 leaf input
patterns as reported earlier (Mahendra et al., 2004), was uti-
lized to cluster the data set of 55 leaf input patterns at a VP set
at 0.999 to test and biologically validate the groups in terms of
in vitro corm induction. Summary of the algorithm for ART 2
along with its exemplified numerical interpretation has been
described in Mahendra et al. (2004). A bi-nodal self-organizing
map (Kohonen neural network; Kohonen, 1997) was utilized to
sort the validation set leaf input patterns whose correspond-

ing shoots were meant to be indexed for corm inducibility. The
mapping was performed on a MATLAB Ver. 7.0 platform. The
various network parameters were set as follows: (a) input data
normalization function: Prestd; (b) topology function: Hextop;

regenerated plants of gladiolus and its biological
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Table 1 – Number of leaf image parameters for each leaf input pattern

Leaf image attribute Domain (luminosity + red + green + blue) Total

Mean brightness level 1 + 1 + 1 + 1 4
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3, 0.
Grey-scale level for the maximum pixel count
Maximum pixel count

Total no. of attributes/input pattern

c) distance function: Linkdist; (d) ordering phase learning rate:
.9; (e) epochs: 100; (f) tuning phase learning rate: 0.02; (g)
eighbourhood distance: 1.0. The SOM network was initial-

zed with the minimum and maximum values of the training
ata (Mahendra et al., 2004) of 25 leaf input patterns.

.3.2. HC- and KM-based cluster analyses
ierarchy of the progressively agglomerative clusters of
alidation-set leaf input patterns was constructed by cal-
ulating the Euclidean distance between the variables on
TATISTICA Ver. 6.0 platform; StatSoft India Pvt. Ltd., New
elhi. The complete linkage method was used to assemble

he patterns.
For k-means clustering, two cluster centroids were ran-

omly generated. Then, the input patterns were assigned
o the nearest cluster center. The new cluster centers were
ecalculated and the process was repeated until convergence
maximum inter-cluster variance and minimum intra-cluster
ariance) was reached. k-Means algorithm was run on STATIS-
ICA Ver. 6.0 platform.

.3.3. Fuzzy ART neural network-based clustering
nalysis
he training data set (Mahendra et al., 2004) and validation
ata sets represented by 25 and 55 leaf input patterns, respec-
ively, having a string of values for 12 distinct properties
Table 1) were subjected to fuzzy adaptive resonance theory
Fuzzy ART) neural network-aided clustering analysis.

.3.3.1. Data normalization. The values of mean brightness
evel, and grey-scale level for the maximum pixel count in
he luminosity and trichromatic components of the leaf image
ixels ranged from 0 to 255. The maximum pixel count ranged
rom 1 to 16. Each input datum representing a particular
arameter for all the leaf images was scaled to a value lying
etween 0 and 1 using Eq. (1):

Normalized value

= 0.5 × (Original value − mean value)
(Maximum value − minimum value)

+ 0.5 (1)

Such data pre-processing is done to ensure the uniform
tatistical distribution of each input and output value, and

Ileaf input pattern = |0.89, 0.60, 0.73, 0.59, 0.58, 0.72, 0.66, 0.6

|Wexample| = |0.93, 0.65, 0.58, 0.63, 0.62, 0.72, 0.66, 0.65, 0.7
|Ileaf input pattern ∧ Wexample| = |0.89 ∧ 0.93 + 0.60 ∧ 0.65 + 0.73

+0.58 ∧ 0.62 + 0.72 ∧ 0.72

+0.66 ∧ 0.66 + 0.64 ∧ 0.65 + 0.7

= |0.89 + 0.60 + 0.58 + 0.59 + 0.58
1 + 1 + 1 + 1 4
1 + 1 + 1 + 1 4

12

also to match the range of fuzzy neurons for efficient and fast
functioning. The fuzzy set values of training and validation
patterns are presented in Fig. 2(a) and (b), respectively.

As large numbers of analog input patterns disturbs the
norm of weight vectors, complement coding was imple-
mented to maintain the amplitude of inherent information:

Complement of input pattern (Ic)

= 1 − Original input pattern (2)

Subsequent to complement coding, input data were fed to
the recognition system as 2 × 12 dimensional input vectors. An
MS DOS-based executable ‘C’ program compilation of Fuzzy
ART algorithm developed by Tomida et al. (2002) was utilized
to perform the cluster analysis. The structural architecture of
Fuzzy ART is depicted in Fig. 3. The dynamic computations
in Fuzzy ART were determined by a choice of parameters ˛

(value is assigned >0; presently 0.01), a learning rate parameter
ˇ (value is assigned >0 and <1; presently 0.1) and a vigilance
parameter (value is assigned >0 and ≤1; presently 0.5–1.0).

2.3.3.2. Working principle of Fuzzy ART algorithm. The net-
work is initialized by setting the connection weights (Wij) to
unity. When an input pattern is presented, choice function is
calculated for every single node. A cluster category is estab-
lished holding a maximum value for choice function (Tj):

Tj(I) =
∣∣I ∧ Wj

∣∣
˛ + |Wj|

(3)

where I is the leaf input pattern/vector of 12 analogue values
representing 12 photometric features, Tj the choice function, ˛

the choice parameter, Wj the weight vector, and ∧ is the fuzzy
AND operator defined as: (x ∧ y)i = min(xi, yi), where

|x| ≡
∑

xi (4)

The following example illustrates the clustering during the
simulation of Fuzzy ART algorithm with validation set leaf
input patterns:

3, 0.51, 0.49, 0.66|,
39, 0.64, 0.52| = 7.76,

∧ 0.58 + 0.59 ∧ 0.63
3 ∧ 0.73 + 0.51 ∧ 0.39 + 0.49 ∧ 0.64 + 0.66 ∧ 0.52|
+ 0.72 + 0.66 + 0.64 + 0.73 + 0.39 + 0.49 + 0.52| = 7.45 (5)
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Fig. 2 – Fuzzified values of photometric data of (a) training and (b) validation data sets. (For interpretation of the references
to color in the text, the reader is referred to the web version of the article.)
Texample = 7.45
0.01 + 7.76

= 0.95 (6)

The maximal Tj is defined as the ‘winner’ cluster for input
pattern. When more than one Tj is maximal, the output nodes
become committed to cluster categories in the order of j = 1, 2,
3, . . .

The match function is represented by Eq. (7):

Mj = |I ∧ Wj|
(7)
|I|

where Mj is the match function, I the input vector, and Wj is
the weight vector.

If Mj ≥ �(VP), then the resonance occurs and learning
(weight vector update) takes place for the established category
following Eq. (8):
Wj(new) = ˇ[I ∧ Wj(old)] + (1 − ˇ)Wj(old) (8)

where Wj is the weight vector, I the input vector, and ˇ is the
learning rate parameter.

On the contrary, if the match-function is less than the vig-
ilance parameter value, then the mismatch reset occurs. Due
to mismatch reset, a new cluster is generated that has the next
maximal Tj value.

The weight vector of a new cluster is calculated as follows:

Wj(new cluster) = ˇ [I ∧ Wj(initial)] = I (9)
where Wj is the weight vector, and ˇ is the learning rate param-
eter.

When a new input pattern is subjected, calculations are
repeated from Eq. (3).
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. Results and discussion

.1. Cluster analysis of the regenerated plants of
ladiolus

validation data set comprising 55 leaf input patterns
Fig. 2(b)) was subjected to both neural network-based (Fuzzy

RT, ART 2 and SOM) and statistical (hierarchical and k-means)
utonomous clustering analyses to sort the regenerated plants
nto groups based on leaf photometric features in trichromatic
omains. The sorted groups were compared in terms of in

Table 2 – Grouping pattern and clustering resolution of regener
k-means algorithm, self-organized mapping and ART 2 approa
number of regenerated plants)

Analytical approach Module No. of groups

Statistical

Hierarchical
clustering

A

B

k-means
algorithm

1

2

Artificial neural
network

Self-organizing
map

1

2

Adaptive resonance
theory 2 (at VP of
0.999)

0

1

T module.

vitro corm induction potential of the representative shoots to
ascertain the biological validation of clustering.

3.1.1. ART 2- and SOM-aided clustering
The validation data set were grouped by the ART 2 algorithm
into two clusters (group ‘0’ and ‘1’) with the vigilance param-
eter value of 0.999. Of 55 plants, 19 plants were sorted into

group ‘0’ and the remaining 36 plants were placed in group ‘1’.
Grouping pattern and clustering resolution of the validation
data set are presented in Table 2. The VP value of 0.999 has
already been found to be critical in deciphering the grouping

ated shoots of gladiolus generated following Hierarchical,
ches (value shown in the parentheses indicates the

Regenerated leaf pattern no.

R1, R2, R3, R4, R5, R7, R11, R13, R15, R17, R18, R22, R23, R28, R29,
R31, R33, R34, R36, R38, R39, R40, R41, R42, R43, R44, R45, R47, R48,
R49, R51, R53, R54, R55 (34)
R6, R8, R9, R10, R12, R14, R16, R19, R20, R21, R24, R25, R26, R27, R30,
R32, R35, R37, R46, R50, R52 (21)
R1, R2, R18, R22, R23, R28, R29, R31, R33, R34, R36, R38, R39, R40,
R41, R42, R43, R44, R45, R47, R48, R49, R51, R53, R54, R55 (26)
R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R19,
R20, R21, R24, R25, R26, R27, R30, R32, R35, R37, R46, R50, R52 (29)

R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17,
R19, R20, R21, R24, R25, R26, R27, R30, R35, R37, R46, R50, R52 (28)
R1, R2, R18, R22, R23, R28, R29, R31, R32, R33, R34, R36, R38, R39,
R40, R41, R42, R43, R44, R45, R47, R48, R49, R51, R53, R54, R55 (27)
R1, R5, R8, R9, R13, R15, R22, R25, R26, R30, R31, R34, R38, R39, R44,
R46, R47, R51, R52 (19)
R2, R3, R4, R6, R7, R10, R11, R12, R14, R16, R17, R18, R19, R20, R21,
R23, R24, R27, R28, R29, R32, R33, R35, R36, R37, R40, R41, R42, R43,
R45, R48, R49, R50, R53, R54, R55 (36)
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f reg

ter. The resultant two groups of input patterns generated by
k-means clustering are distinct from each other due to sig-
nificant differences between the mean values of all the 12
features.

Table 3 – Mean values of each variable in cluster 1 and
cluster 2

Variable Cluster 1 Cluster 2

Luminosity-mean 0.872528 −0.782267
Luminosity-level 0.879119 −0.788175
Luminosity-count −0.517605 0.464059
Red-mean 0.879108 −0.788166
Red-level 0.880380 −0.789307
Red-count −0.451130 0.404461
Green-mean 0.802724 −0.719683
Green-level 0.809589 −0.725839
Fig. 4 – Hierarchical clusters o

pattern of the training data sets (Mahendra et al., 2004). Clus-
tering of the validation set leaf input patterns did not result
in any variation in terms of the number of groups that are
generated from the training set. In our earlier work, the train-
ing set was sorted into two groups with ART 2 (Mahendra et
al., 2004). The self-organized mapping analysis of the valida-
tion data set also resulted in two distinct clusters. Regenerated
plants were distributed in the ratio of 28:27 in two groups
(Table 2).

3.1.2. Hierarchical clustering
In Hierarchical clustering, the extent of similarity or dis-
similarity between the regenerated leaf input patterns was
estimated by calculating the Euclidean distance function.
Thereafter, based upon the proximity level, the input pat-
terns are linked together by a method of complete linkage
function until all the clusters are grouped together in a hier-
archical format. The hierarchical clustering results showed
that the greatest linkage distance was between Link 1 and
Link 2 (Fig. 4). This inconsistency of linkage distance indicated
prominent differences existed between the input patterns at
this level of hierarchy. Therefore, the cluster of leaf input

patterns grouped under the Link 1 was considered to be
distinctly different from the cluster grouped under Link 2.
The grouping patterns of 55 regenerated plants are shown in
Table 2.
enerated leaf input patterns.

3.1.3. k-Means clustering
The dual-grouping property of both the ART 2 and HC meth-
ods prompted us to heuristically set two cluster centroids for
k-means clustering of the validation-set leaf input patterns.
Table 3 presents the mean values of variables in each clus-
Green-count −0.402454 0.360821
Blue-mean 0.815030 −0.730717
Blue-level 0.854906 −0.766467
Blue-count −0.796882 0.714446
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Fig. 5 – Effect of vigilance parameter on the number of
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lusters generated by Fuzzy ART.

The partitioning of validation-set leaf input patterns into
wo distinct clusters is shown in Table 2. It appears that
he regenerated plants are not uniform in terms of leaf
hotometric features. Plants having maximum similarity in
richromatic domain fall in a particular group and they were
lustered into two distinct groups, both by classical discrimi-
ant analysis techniques and the ART 2-based artificial neural
etwork. However, the distribution of regenerated plants in
wo clusters appeared to be dependent on the method of
nalysis.

.1.4. Fuzzy ART-based clustering
nitially, training set data of leaf images were subjected to
uzzy ART clustering analysis with vigilance parameter val-
es ranging from 0.1 to 1.0 at an interval of 0.01 increments.
he number of generated clusters increased with higher VP
alues. For VP values less than 0.8, there was little change in
he number of generated clusters (Fig. 5).

For VP values above 0.91, the number of clusters increased
harply. Similar kinds of variation in clustering pattern with

change in VP value were also noted in the analysis of
ene expression profile using Fuzzy ART (Tomida et al., 2002).
o identify the optimal number of clusters, we considered
he error value obtained from B-spline interpolation (Fig. 6).
rom Fig. 6, it is evident that the network displayed a stable
lustering up to a VP of 0.91. Inconsistency in network per-
ormance was observed with VP > 0.91. The number of groups

orresponded to VP = 0.91 was 7 (Table 4) and seemed to be
easonable for Fuzzy ART clustering.

The efficiency of the learning process was checked with the
alidation data set. The test as well as validation leaf input

Table 4 – Fuzzy ART mediated grouping and distribution of trai

Groups

A B C

No. of regenerated shoots 3 5 4
Leaf input pattern no. 1, 4, 5 2, 21, 23, 24, 25 6, 7, 9, 1
Fig. 6 – B-spline interpolation of number of clusters
generated.

patterns were allocated into seven groups (Table 5). Similarity
in the number of groups between the training and validation
data sets indicates the efficiency of network classification and
its ability to recognize the photometric variation in leaf image
properties.

Compared to the performance of classical discriminant
analysis techniques and ART 2, the Fuzzy ART generated more
clusters (7) in both the training and validation data sets. The
combination of the fuzzy set theory and adaptive resonance
theory resulted in refined grouping and thereby efficiently pro-
jected the variation among the regenerated plants in terms of
leaf trichromatic features.

One of our aims was to find whether the autonomously
sorted groups exhibit any difference in their organogenic
(corm induction) potential. The organogenic potential of
the in vitro shoots obviously would take only two proba-
ble routes, i.e. either they would or would not produce in
vitro corms. Therefore, from a plant tissue culturist point
of view, clustering into two groups as obtained by HC, k-
means, SOM and ART 2 seems to be more logical than the
refined grouping of Fuzzy ART. Compared to ART 2, Fuzzy
ART uses the degree of an input pattern being fuzzy sub-
set of a stored prototype to measure the similarity between

the patterns. This property makes Fuzzy ART highly sensi-
tive to additional noise on trained input patterns and resulted
in refined grouping with seven clusters at optimum VP of
0.91.

ning set leaf input patterns at VP of 0.91

D E F G

7 4 1 1
8 8, 10, 12, 13, 14, 15, 16 3, 11, 17, 20 19 22
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Table 5 – Fuzzy ART mediated distribution and grouping of validation set leaf input patterns with potential for corm
induction

Groups

A B C D E F G

No. of regenerated shoots 2 12 2 11 8 12 8
Leaf input pattern no. 1, 2 3, 4, 5, 6, 7, 11,

13, 14, 15, 17,
9, 19 8, 10, 12, 16, 20, 25,

26, 30, 35, 37, 50
18, 27, 32, 41,
46, 52, 54, 55

28, 33, 34, 36,
40, 42, 43, 44,

22, 23, 29, 31,
38, 39, 45, 51

4.5
21, 24
No. of plants with corms 0 7 1 6
% Corm induction 0 58.3 50 5

3.2. Biological validation of the grouping of
regenerated shoots in terms of in vitro corm induction
potential

Biological validation of grouping of regenerated plants, i.e.
which group of plants is more suitable to induce corm was
also investigated. The culture-derived corms are analogous to
synthetic seeds and may be conveniently stored, distributed
and sown at any time of the year, bypassing the hardening
stage and simultaneously eliminating the problem of dor-
mancy exhibited by in vivo corms. Non-invasive prediction of
the behavior of the in vitro regenerated shoots that are capa-
ble of producing corms might enhance the overall efficacy of
micropropagation.

Corm induction features, such as percent induction,

perimeter, fresh and dry weights, were compared among the
groups generated by various clustering approaches and are
presented in Table 6. The groups generated by HC, KM and
SOM clustering methods did not show any significant differ-

Table 6 – Correlation of grouping pattern with in vitro corm indu

Group no. No. of
plants

No. of plants
producing

corms

% Corm
induction

Perimet
(mm)

Hierarchical clustering
A 34 20 58.8 21.60 ± 5.
B 21 12 54.5 23.58 ± 7.

P = 0.461 n

k-Means algorithm
1 26 16 61.5 22.25 ± 5.
2 29 16 55.1 22.44 ± 7.

P = 0.938 n

Self-organizing map
1 28 15 53.5 22.60 ± 7.
2 27 17 62.9 22.12 ± 5.

P = 0.844 n

Adaptive resonance theory 2
0 19 7 36.8 16.14 ± 2.
1 36 25 69.4 24.08 ± 6.

P = 0.0001

Perimeter = 2 × � × radius; diameter = 2 × radius.
∗ Significant at P ≤ 0.05; ns, non-significant.
47, 48, 49, 53
5 8 5
62.5 66.6 62.5

ence with respect to corm induction features. A significant
difference in percent corm induction among the groups was
noted with ART 2. Corm induction in group ‘1’ was 69.4%, while
36.8% regenerated plants of group ‘0’ developed corms. Quan-
titative features of the developed corms, such as perimeter,
fresh and dry weights, have also been found to be significantly
different between the two groups (Table 6).

A significantly high percentage of corm development in
group ‘1’ with improved corm features indicates the biolog-
ical potential of the regenerated shoots categorized in that
group. However, the grouping pattern of Fuzzy ART rendered
itself inconclusive while trying to distinguish the groups with
significant difference in corm induction potential (Table 5).
Neuro-fuzzy clustering algorithms were used successfully
in characterizing the genetic and metabolic functions of

prokaryotic organisms. Fuzzy ART has been used to cluster
sporulation-specific gene expression profiles of Saccharomyces
(Tomida et al., 2002) and to analyze the gene expression of
heat shock protein (Kato et al., 2002). Fuzzy ART was also

ction and quantitative features of developed corms

er Diameter
(mm)

FW (g) DW (g) Relative dry
weight
(DW/FW)

88 6.88 ± 1.87 0.24 ± 0.10 0.14 ± 0.07 0.55 ± 0.08
91 7.51 ± 2.52 0.29 ± 0.16 0.17 ± 0.12 0.54 ± 0.11

s P = 0.461 ns P = 0.303 ns P = 0.363 ns P = 0.906 ns

96 7.09 ± 1.90 0.24 ± 0.11 0.14 ± 0.08 0.54 ± 0.07
49 7.15 ± 2.39 0.28 ± 0.14 0.16 ± 0.10 0.55 ± 0.11

s P = 0.938 ns P = 0.470 ns P = 0.464 ns P = 0.816 ns

73 7.20 ± 2.46 0.29 ± 0.14 0.17 ± 0.10 0.56 ± 0.10
80 7.04 ± 1.85 0.24 ± 0.11 0.13 ± 0.08 0.53 ± 0.08

s P = 0.844 ns P = 0.325 ns P = 0.293 ns P = 0.396 ns

97 5.14 ± 0.95 0.19 ± 0.05 0.11 ± 0.04 0.54 ± 0.06
38 7.67 ± 2.03 0.28 ± 0.14 0.16 ± 0.10 0.54 ± 0.10

* P = 0.00011* P = 0.0146* P = 0.0315* P = 0.976 ns
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pplied to time-series microarray data of oxidative stress in
accharomyces to infer genetic interactions (Takahashi et al.,
002, 2003). Similarly, a time-course gene expression profile
f Escherichia coli was subjected to Fuzzy ART to infer the role
f genes in organic solvent tolerance (Shimizu et al., 2005). In
lant tissue culture systems, the application of Fuzzy neural
etwork was found to be useful in estimating the shoot length
f regenerated rice (Honda et al., 1997).

Early non-invasive prediction of the potential of the regen-
rated shoots for corm induction appeared to be possible with
RT 2 solution. Methods such as HC and KM processed the
atterns in batch and lacked the property of recognizing and
emorizing new input patterns, yet retaining the previously

earned information. The primitive processing nature of SOM
eural network perhaps could not recognize groups signifi-
antly different with respect to in vitro corm induction. Among
he ART networks, Fuzzy ART with fuzzy sets made the net-
ork noise-sensitive, resulting in clustering of the patterns

nto more groups, which however, was inappropriate to index
n vitro corm induction capacity. The merit of ART 2 in deci-
hering shoots with significant difference in in vitro corm
evelopment potential lies in its low noise-sensitivity and net-
ork plasticity.

. Conclusions

he present work describes the photometric clustering of
egenerated shoots and compares the performance of various
lustering approaches in terms of corm induction potential
f the sorted groups. ART 2-aided sorting of the regenerated
hoots appeared to be more promising for selecting groups of
lants capable of corm development than HC, KM and SOM
utonomous clustering methods. Fuzzy ART resulted in larger
umbers of clusters over ART 2, but the grouping pattern
oes not enable us to segregate the potential corm produc-

ng shoots. The significant difference in corm development
ercentages in two trichromatically grouped plants by ART 2
ot only indicated a link between the photometric properties
f the shoots to their organogenic potential but also the bio-

ogical significance of photometric clustering of regenerated
hoots.

e f e r e n c e s

lbiol, J., Campmajo, C., Casas, C., Poch, M., 1995. Biomass
estimation in plant cell cultures: a neural network approach.
Biotechnol. Prog. 11, 88–92.

arpenter, G.A., Grossberg, S., 1987a. ART 2: stable
self-organization of pattern recognition codes for analog
input patterns. Appl. Opt. 26, 4919–4930.

arpenter, G.A., Grossberg, S., 1987b. A massively parallel

architecture for a self-organizing neural pattern recognition
machine. Comput. Vision Graph. Image Process. 37, 54–115.

arpenter, G.A., Grossberg, S., Rosen, B., 1991. Fuzzy ART: fast
stable learning and categorization of analog pattern by an
adaptive resonance systems. Neural Networks 4, 759–771.
r i c u l t u r e 6 0 ( 2 0 0 8 ) 8–17 17

Dutta Gupta, S., Datta, S., 2004. Antioxidant enzyme activities
during in vitro morphogenesis of gladiolus and the effect of
application of antioxidants on plant regeneration. Biol. Plant.
47, 179–183.

Eisen, M.B., Spellman, P.T., Brown, P.O., Bostein, D., 1998. Cluster
analysis and display of genome-wide expression patterns.
Proc. Natl. Acad. Sci. (USA) 95, 14863–14868.

Grossberg, S., 1976. Adaptive pattern classification and universal
recoding II: feedback, expectation, olfaction and illusions.
Biol. Cybernatics 23, 187–202.

Hartigan, J.A., Wong, M.A., 1979. A k-means clustering algorithm.
Appl. Stat. 28, 100–108.

Honda, H., Takikawa, N., Noguchi, H., Hanai, T., Kobayashi, T.,
1997. Image analysis associated with a fuzzy neural network
and estimation of shoot length of regenerated rice callus. J.
Ferment. Bioeng. 84, 342–347.

Ibaraki, Y., 2006. Evaluation of photosynthetic capacity in
micropropagated plants by image analysis. In: Dutta Gupta, S.,
Ibaraki, Y. (Eds.), Plant Tissue Culture Engineering. Focus on
Biotechnology, 6. Springer, The Netherlands, pp. 15–29.

Kato, N., Kobayashi, T., Honda, H., 2002. Gene expression analysis
heat shock response using Fuzzy ART. Genome Inf. 13,
272–273.

Kohonen, T., 1997. Self-Organizing Maps. Springer, Berlin.
Larkin, P.J., Scowcroft, W.R., 1981. Somaclonal variation—a novel

source of variability from cell cultures for plant improvement.
Theor. Appl. Genet. 60, 197–214.

Mahendra, Prasad, V.S.S., Dutta Gupta, S., 2004. Trichromatic
sorting of in vitro regenerated plants of gladiolus using
adaptive resonance theory. Curr. Sci. 87, 348–353.

Murashige, T., Skoog, F., 1962. A revised medium for rapid growth
and bioassays with tobacco tissue cultures. Physiol. Plant. 15,
473–497.

Prasad, V.S.S., Dutta Gupta, S., 2006. Applications and potentials
of artificial neural networks in plant tissue culture. In: Dutta
Gupta, S., Ibaraki, Y. (Eds.), Plant Tissue Culture Engineering.
Focus on Biotechnology, 6. Springer, The Netherlands, pp.
49–69.

Ross, D.T., Scherf, U., Eisen, M.B., Perou, C.M., Ress, C., Spellman,
P., Iyer, V., Jeffrey, S.S., Rijn, M.V.D., Waltham, M.,
Pergamenschikov, A., Lee, J.C.F., Lashkari, D., Shalon, D.,
Myers, T.G., Weinstein, J.N., Botstein, D., Brown, P.O., 2000.
Systematic variation in gene expression patterns in human
cancer cell lines. Nat. Genet. 24, 227–235.

Shimizu, K., Hayashi, S., Doukyu, N., Kobayashi, T., Honda, H.,
2005. Time-course data analysis of gene expression profiles
reveals purR regulon concerns in organic solvent tolerance in
Escherichia coli. J. Biosci. Bioeng. 99, 72–74.

Takahashi, H., Tomida, S., Kobayashi, T., Honda, H., 2002. Genetic
network analysis using F2D matrix. Genome Inf. 13,
377–379.

Takahashi, H., Tomida, S., Kobayashi, T., Honda, H., 2003.
Inference of common genetic network using fuzzy adaptive
resonance theory associated matrix method. J. Biosci. Bioeng.
96, 154–160.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S.,
Dmitrovsky, E., Lander, E.S., Golub, T.R., 1999. Interpreting
patterns of gene expression with self organizing maps:
methods and application to hematopoietic differentiation.
Tomida, S., Hanai, T., Honda, H., Kobayashi, T., 2002. Analysis of
expression profile using fuzzy adaptive resonance theory.
Bioinformatics 18, 1073–1083, available at:
http://www.nubio.nagoya-u.ac.jp/proc/ENGLISH/Fuzzy.html.

http://www.nubio.nagoya-u.ac.jp/proc/ENGLISH/Fuzzy.html

	Photometric clustering of regenerated plants of gladiolus by neural networks and its biological validation
	Introduction
	Materials and methods
	Plant regeneration and in vitro corm induction
	Extraction of photometric parameters of leaves
	Cluster analysis of the photometric data
	ART 2- and SOM-based cluster analyses
	HC- and KM-based cluster analyses
	Fuzzy ART neural network-based clustering analysis
	Data normalization
	Working principle of Fuzzy ART algorithm



	Results and discussion
	Cluster analysis of the regenerated plants of gladiolus
	ART 2- and SOM-aided clustering
	Hierarchical clustering
	k-Means clustering
	Fuzzy ART-based clustering

	Biological validation of the grouping of regenerated shoots in terms of in vitro corm induction potential

	Conclusions
	References


